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LIMIT ANALYSIS AND DESIGN*
By William Praser**
Synopsis. Many problems concerning limit analysis and
1imit design of reinforced concrete beams and frames
can be treated geometrically in terms of the safe domain

in load space, The procedure is i1llustrated by a typical
exanple,

INTRODUCT ION

The conventional analysis of indeterminate structures
is restricted to the elastic range., Structures with ductile
members may remain serviceable far beyond this range, so that
the limits of their usefulness cannot be explored by the methods
of elastic analysis, Limit analysis is concerned with estimat-
ing the load intensity at which a given indeterminate structure
ceases to be serviceable, Limit design, on the other hand, is
concerned with allocating local yleld strength to the members
or cross sections of an indeterminate structure in such a manner
that thils structure remains serviceatle under given conditions
of loading,

The basic concepts of limit analysis were developed more
than thirty years ago (1), Early applications were restricted
to continuous beams (see, for instance, (2)), but later on frames
were also treated successfully (see, for instance, (3)). General

principles were established by Greenberg and Prazer (4), and

* This paner is based on the results of research sponsored by

the Office of Naval Research under Contract N7onr-35801 with
Brown University.
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Hi1l1 (5), and a very effective method of analysls was develcped
by Symonds and Neal (6), Contrary to limit analysis, limit
design in the sense defined above constitutes a practically un-
explored field, Heyman (?7) has studied certain problems in the
limit desizn of continuous beams and frames, and Foulkes (8)
has pointed out the relation between 1imit design and linear
programming, The following discussion is concerned with the
1imit design of a particular frame (Fig. 1), It is felt that,
in the absence of general results, much is to be learned from

the discussion of such a specific example,

BASIC CONCEPTS

The elastic analysis of indeterminate beams and frames
is based on a linear relation between the bending moment M and
the curvature x (dotted line in Fig. 2). As Hill (%) pointed
out, limit analysis may be based on the relation between M and x
which is represented by the full line in Fig, 2, A-cordingz to
this relation, bending can take place only if the bending moment
attains the limiting values M'! or - M", Since these extreme
values will be reached only at discrete cross sections, bending
will be localized in "plastic hinges",

Admittedly, the full-line graph in Fig. 2 revnresents an
oversimplification of the actual relation between M and x, One
important feature of the mechanical behavior of reinforced cone
crete beams 1s more adequately reflected by this graph, however,

than by the dotted 1line in Fig, 2: at certain (more or less well
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defined) values of the positive or negative bending moment the
curve M cersus x turns rather sharply and becomes fairly flat

compared to its steep ascent in the elastic range.

EXAMPLE FRAME

The frame shown in Fig. 1 is bullt-in at 1 and pin-
supported at 5, The loads P and Q are supposed to vary inde-
pendently, and it 1s required to find all "safe states of load-
ing", i.e., all combinations of P and Q ( including negative
values of these loads) which will not cause plastic failure of
the frame. If a state of loading is represented by the point
with the rectangular coordinates P, Q in a two-dimensional "load
space", the points representing safe states of loading form the
"safe domain" whose properties will be discussed in the following.

Bending moments will be considered as positive, if they
produce tension on the inner side of the frame, Accordingly;
the angle change at a plastic hinge will be considered positive,
if it renresents an increase of the interior angle.

It will be assumed that the limiting moments of column
and beam match at 2 and 4, and that the limiting moments of each
of the segments 1-2, ,.,, 4=5 vary linearly along this segment,
Since the bending moments caused by the loads also vary linearly
along each of these segments, plastic hinges need to be considered
at the critical sections 1 to 4 only. The limiting moments at
these sections will) be written in the form

Ml = M*® 4 Mo -M!" = * o G = cee 0
il A . My o= My oM, (1=, y 1) (1]
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If the limitinz moments Mi and -%; are considered as the endpoints
of the ''safe range" of the considered cross section, MI repre~
sents the center of this range and 2M: its width,

As was pointed out by Symonds and Neal (6), it 1is con-
venient to consider any plastic deformation (made possible by
the apnearance of a sufficient number of plastic hinges) as
resultin: fron the cooperation of certain elementary mechanisms,
In the present case, there are only two such elementary mechan-
isms: the frame mnechanism of Fig, 3(a), and the beam mechanism
of Fig. 3(L). The numbers on the inner side of the frame in
Fig. 3 indicate the angle changes corresponding to unit linear
displacemnents of the points of application of P and Q, respec-
tively. A generic plastic deformation of the frame will be
specified by the horizontal displacement p of 2 and the vertical

displacement q of 3 (Fig. 4),

SAFE SEGMENTS OF EXAMPLE rPAME
To construct the safe domain of the frame, consider
first the hynothetical case where M* = 0 and M* = M°

2 b i
1=1, 3, 4, Since a section with vanishing limit moments acts

O for

as a perfect hinge, the frame would, in this case, have hinges
at 1, 3, h, and 5, and hence be capable of deformation even in
the absence of a nlastic hinze at 2, This type of deformation
1s obtained by combining the elementary deformations shown in
Figs. 3(a) and (b) in such a manner that the rgsulting angle

change at 2 vanishes, This condition of vanishing angle change
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at 2 requires that p = 2q. The principle of virtual work shows
then that the frame with perfect hinges at 1, 3, 4, and 5 can
be in equilibrium only if

/P = -2, [ 2]
Even if this ratio between the loads 1s maintained, the frame
will eventually fall because a plastic hinge will form at 2 when
the loads are sufficiently large, Thus, the safe domain in this
hypothetical case 1s a finite segment of the line with the equa=~
tion [2]. The endpoints A and B of this segment shcwn in Fig.
5(a) are readily determined by the kinematic method of Greenberg

and Prager (4); their coordinates are found to be

A: P

I

o] - o)
M2/6a, Q = -M2/3a, [3]

B: P

l

-M3/6a, Q= M3/3a.

It is worth noting that A and B are symmetric with respect tc

the origin and that the coordinates of A are obtained by multi=-

plying the anzle changes at the joint 2 in Fig. 3(a) and (b)

by Mg.
Next, consider the case which differs from the previous

one only by the fact that Mg # 0, It is found that, in this rase,

the safe Jdomain shown in Fig, 5(b) is a segment which has the

same lenzth and slope as before but is centered at the point C

with the coordinates

C: P = Mi/6a, Q = -M%/3a. (4]

The coordinates of C are obtained by multiplying the angle changes
at the joint 2 in Fig. 3(a) and (b) by M;.
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Three other hypothetical cases have to be considered,
In each of then the limiting moments vanish at all but one of
the critical sectlouis, The corresponding safs domains are
readily deternined by the method outlined above. For e:ample,
Fig, 6(a) shows the safe segment (for the case where Hi = M; =
Mp = M¢ =0, 13 = M, My = Mg = M) = O, the quantity l/6a beins

taken as thc unit of force, Each of these safe sezments takes

account of tiic yield strength of one critical section only as-

suming the other sections to have wvanishinz yleld strength.

SAFE DOMAIN OF EXAMPLE FRAME
The actual safe dcmain of the considered frame can be
obtained from the safe segments by applying the followinz super-
position principle: a point S of the P, Q plane is 1in the safe
domain of the considered frame if and only if the position vector
of S can he obtalned by selecting one point in each of the four
safe segments and adding the position vectors of these four
points,
In accordance with this superposition principle the
desired safe domain is obtained by the following steos (Fig. 7):
1) let the safe segment of Fig. 6(a) undergzo a trans-
lation such that its center moves alonz the safe
segment of Fig., 6(b); the (dotted) parallelocram
swept 1n this motion is the safe domain which takes
account of the yield strength of the sections 1 and
5.
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2) let this parallelogram undergo a translation such
that its center moves along the safe segment of
Fiz. 6(c); the (dashed-line) hexagon swent in this
motion is the safe domain which takes account of
the yield strength of the sections 1, 2, and 3;

3) let this hexazon undergo a translation such that

its center moves along the safe segment of Fig., 6(d);

the (full-iine) octagon swept in tals motion is the
desired safe domain of the frame, i.,e., any combina-
tion of P and 0O represented by a point inside this
octagon will not cause plastic failure of the franme
specified by Mi = M; = Ng = Mﬁ = 0, M; = Mg = Mg =
ng = M,

It follows from this construction that the sides of the
safe domain arc parallel and equal to the safe segments, If
the valuc of M° at a critical section is doubled, for example;
the correspondinz safe segment and hence the corresponding side
of the safe domain doubles in length but does not chanze its di-
rection, #isure 8(a) shows how Fig. 7 changes when the value of
Mg i1s doubled and that of Mg is halved, If the value of M* at
a critical section is changed, the corresponding safe segment
slides alon; itself without changing its length (see Fig. 5);
the safe domain of the frame therefore undergoes a translation
iIn the direction of one side: Fizure 8(b) shows how Fig, 3(a)

changes vhen Y% is changed from O to M/2,
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LIMIT - DESIGCN OF EZXAMNPLE FRAME [
The loads in Fig. 1 ney result from the action of
structural wveight, snow load, and wind pressure, positive values

of P corresponding to wind pressure on the left wall and nezative

values to wind pressure on the right wall, If wind suction on
the flat roof and the lee-side wall is taken irto account, the |
possible states of combined loading are represented by the points

of a "domain of loading" such as the hexagon ABCDCF in Fig, 9.

This domain of loading will be assumed to Incorporate the a»npro-

priate load factors, The octagon BCIKEFGH is circumscribed to

this domain of loading and has sides of the apnropriate direc-

tions. The manner in which this octagonal safe domain is built

up from the safe segments is indicated in Fig. 9. By analyzing

these segments, the values of M* and M® for all critical sec-

tions are readily determined, One finds

ﬂ
ME = -0,5M, M7 = 6.5M,
ME = -0.5M, Mg =M,
> (5]
MY = M, Mg = 2M, |
# o= o 0 =
Mr = -0,5M, M= M,

J
where M is the value of the limiting moment used in constructing
Fig. 6. ‘Iith the values [5], the limiting moments at the criti-
cal sections are easily found from [1] as follows:

6,0 M and -7,0 M for section 1,

0,5 M and -1.9 M for section 2,
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i and -1,0M for section 3,

0
5

Qo W

M and ~=1.9 M for section k,

There 1s, of course, more than one way of circurscribing
an appropriate octagon tc the domain of loading. For instaace,
the octagon BCY'I'IJF'G'H could be used; this leads to heavier
sections 1 and 3 and a lighter section 4, It is likely, however,
that the design for vhich safe domain and domain of loading have
a maximum number of vertices in common revrecents the ncst econ-

omic use of matecrisals,

CONCLUDING RLIMARIS

The method developed above is adequate whenever the
plastic deformation of the structure can be described in terms
of two elementary wmechanisws, wnen there are three elementary
mechanisms, as in the case of the frame shown in Fig., 9, a three-
dimensional lnad srace must be used (with P, ¢, R as rectangular
coordinates)., The safe domain is then a polyhedron which can
be constructed from safe segments very much in the same way as
the polyzonal safe domain was constructed above, Complications
arise, howvever, when the three loads P, Q, R are not independent
of each other, When P and 0 result from wind pressure, for
instance, the ratio P/Q will have a fixed value n, The safe
domain for tals case 1Is then obtalned as the intersection of the
afore-mentioned polyhedron and the plane P-nQ = O, When the
polyhedron is not centered at the orizin, this intersection can
assumc a ratacr irregular shape, It 1is beclieved that the influ-

ence of chanzes in cross secticn on the shape of this two-
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dimensional safe domain can be properly understood only if this
domain is visulaized a2s a plane intersection of the much more

regular tnree-dimensional safe domain,
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ige 3. Elemsntary mec¢hanisms,

bp

/

Fig. 4. Specification of deformation by displacements p amd ¢.
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Fig. 5. BSafe zegments {all M¢* and My°® except those
indicated on figure are assumed to vanish).
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Pig. 6. B8afe segments (xii ¥F4® and K © except those indicated on
figure are assumed to vanishy unit of fores = Gd/a )
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Pige 7. Safe domain (M;* = M,® o
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(a)
Safe damins: {unit of foree =
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Pige 9o Limit duign of example Irame (anit of force = &¢/a).
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Fig. 10. Frame with three elementary mechanisms,
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